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1 Introduction
Functional trace estimation of a matrix is commonly seen in many applications in fields like Machine learning,
Computational biology, Quantum Chemistry, and signal processing. Given a symmetric matrix A ∈ R

n×n

with an eigendecomposition A = UΛU⊤, where Λ = diag(λ1, λ2, . . . , λn) and λi, i = 1, . . . , n, are the
eigenvalues of A, the matrix function f(A) is defined as:

f(A) = Uf(Λ)U⊤,

where f(Λ) = diag(f(λ1), f(λ2), . . . , f(λn)). The trace estimation problem can then be formulated as
follows: given a symmetric matrix A ∈ R

n×n, compute an approximation of the trace of the matrix function
f(A), i.e.,

tr(f(A)) =

n
∑

i=1

f(λi),

where λi, i = 1, . . . , n, are the eigenvalues of A, and f is the desired function. A naive approach to
estimate the trace of matrix functions is to compute this trace directly from the eigenvalues of the matrix,
which is expensive.

A variety of methods have been developed to address trace estimation problems. The stochastic trace esti-
mator has been applied in various contexts, such as diagonal estimation, eigenvalue counting, log-determinant
computation, and nuclear norm approximation[1, 6, 13]. For log-determinants, techniques like Chebyshev[11]
and Taylor series expansions[16], as well as rational approximations using the Cauchy integral formula, have
been used, although these can be computationally expensive due to requirements like solving multiple linear
systems.

The Lanczos algorithm offers a compelling alternative for trace estimation of matrix functions, with
advantages such as faster convergence compared to polynomial (e.g., Chebyshev or Taylor) and rational
approximation methods. Unlike other methods, Lanczos does not require prior knowledge of the matrix
spectrum and provides a matrix-dependent quadrature interpretation, leading to better convergence. How-
ever, it has practical drawbacks, such as higher storage requirements and reorthogonalization costs[10]. While
polynomial methods are more storage-efficient and allow for easier a posteriori error estimates, they may
converge slowly, particularly for functions with steep derivatives or discontinuities. Numerical experiments
demonstrate the superior performance of the Lanczos method over other approaches, making it a robust
choice for trace estimation problems.

In this project, we extend the Stochastic Lanczos Quadrature (SLQ) method, a widely used approach for
functional trace estimation [15], to a block-based formulation aimed at improving the estimator’s performance
through preconditioning. We conduct an exploratory study using the large sparse matrix bcsstk09 from the
SuiteSparse library[4] to evaluate the impact of blocking on the SLQ method and its variant that incorporates
the Hutch++ estimator for trace estimation. The results of our analysis provide insights into the effects of
blocking on the accuracy and computational efficiency of these methods, and we outline potential directions
for further research.

1



1.1 Stochastic Trace Estimators
1.1.1 The Hutchinson Estimator

Let A ∈ R
n×n and consider a set of iid isotropic random vectors {ωi}

s
i=1 ∼ UNIFORM{±1}n, then the

functional trace estimate of A for a given f is stated as

t̂rH (f(A)) =
1

s

s
∑

i=1

ω⊤

i f(A)ωi (1)

1.1.2 The Hutch++ Estimator

One variance reduced estimator, proposed by Meyer [12] is the Hutch++ estimator. If assume s is even and
let Ω1 be the matrix whose columns are the first s/2 samples, and Ω2 the matrix formed by the remaining
s/2 samples, then the Hutch++ estimator is defined as follows

Y := AΩ1 Q := Orth(Y )

t̂rH++ (f(A)) = tr
(

Q⊤f(A)Q
)

+
1

s/2
tr
(

Ω
⊤

2

(

I −QQ⊤

)

f(A)
(

I −QQ⊤

)

Ω2

) (2)

where the first term in t̂ri corresponds to a low rank approximation of A formed with all samples but the
ith, and the second term to the trace of the residual, which is estimated by the Hutchinson estimator with
the remaining samples Ω2.

1.1.3 A Blocked Hutchinson Estimator

If we block the samples ωi ∈ R
n×b into blocks of size b, represented by the blocks Ωi, a blocked variant of

the Hutchinson estimator may be written as

t̂rH(f(A)) =
1

s

s/b
∑

i=1

tr
(

Ω
⊤

i f(A)Ωi

)

(3)

2 Block Krylov Subspace Methods for Matrix Functions
To develop a blocked variant of the Hutchinson estimator, it is necessary to compute block matrix vector
products with f(A), i.e. quantities of the form f(A)B for B ∈ R

n×b.

2.1 Block Arnoldi
Consider a block generalization of the Arnoldi process, where we compute an orthogonal basis for the block
Krylov subspace Kk(A,B) = span

(

{B,AB, · · · ,Ak−1B}
)

where we note this block Krylov subspace is
(assuming no early breakdown) of dimension kb. First we orthogonalize the starting block B via a QR
factorization B = QR. Then, if we let Qk ∈ R

n×kb be the matrix which contains the orthogonal blocks
that form the basis for Kk(A,B), i.e. Qk = [Q1, · · · ,Qk], where Q1 = Q, and we let

Q⊤

k AQk = Hk ∈ R
kb×kb

where Hk is the block upper Hessenberg matrix obtained by the Arnoldi process, i.e.

Hk =











H11 H12 · · · H1,k

H21 H22 · · · H2,k

. . . . . . ...
Hk,k−1 Hk,k
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Then, we also have the generalization of the Arnoldi recurrence for computing Hk

AQk = QkHk +Qk+1Hk+1,kÊ
⊤

k

where Êm is a “block unit vector”, and extracts the columns of a matrix corresponding to the kth block, i.e.

Êm = êk
m ⊗ Ib =











0

...
0

Ib











∈ R
kb×b

where Ib ∈ R
b×b denotes the identity matrix of dimension b and êk

m ∈ R
k denotes the mth standard basis

vector in R
k. We may then use the block Arnoldi upper Hessenburg form Hk to approximate f(A) via [5]

f(A) ≈ Qkf(Hk)Ê1R (4)

and the block Arnoldi algorithm is given by

Algorithm 1 Block Arnoldi
Q1,R = qr (B)
for m = 1 · · ·mmax do

for i = 1 · · ·m do
Hi,m = Q⊤

i AQm

end for
Qm+1,Hm+1,m+1 = qr

(

AQm −QmHmÊm

)

end for

Hm =











H11 H12 · · · H1,mmax

H21 H22 · · · H2,mmax

. . . . . . ...
Hmmax,mmax−1 Hmmax,mmax











return Hm

2.2 Block Lanczos
If A is symmetric, then Hk ≡ T k is block-tridiagonal. Note, since each of the Hi+1,i subdiagonal blocks
are obtained as R factors from a QR factorization, and hence they are upper triangular, the matrix T k is
actually a banded matrix with bandwidth b.

T k =













A1 B⊤

1

B1 A2
. . .

. . . . . . B⊤

k−1

Bk−1 Amk













For these matrices, the product QkHkÊk ≡ QkT mÊk contains mostly zeros, and may be written as

QkT kÊk =



Q1 · · · Qk−1 Qk















0

...
B⊤

k−1

Ak











= Qk−1B
⊤

k−1 +QkAk
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which gives the following three term recurrence

Qk+1,Bk = qr
(

AQk −Qk−1B
⊤

k−1 +QkAk

)

and so we have the following algorithm

Algorithm 2 Block Lanczos
Q1,R = qr (B)
for k = 1 · · · kmax do

Ak = Q⊤

k AQk

Qk+1,Bk = qr
(

AQk −Qk−1B
⊤

k−1 +QkAk

)

end for

T k =













A1 B⊤

1

B1 A2
. . .

. . . . . . B⊤

kmax−1

Bkmax−1 Akmax













return T k

where we note in the above algorithm Q−1,Bk−1 ≡ 0 (formally accessed at the first iteration) as nota-
tional convenience.

2.3 The Block Lanczos Quadrature
When computing matrix functions, it is often that case that A is symmetric and positive definite, as we
will assume henceforth. For such A it is natural to use the Lanczos method to estimate block matrix vector
products with f(A). For computing our blocked Hutchinson estimator (Eq. 3), we must estimate (using Eq.
4)

tr
(

Ω
⊤

i f(A)Ωi

)

≈ tr
(

Ω
⊤

i Qkf(T k)Ê1R
)

where Ωi = QkÊ1R and

tr
(

Ω
⊤

i Qkf(T k)Ê1R
)

= tr
((

R⊤Ê1
⊤Q⊤

k

)

Qkf(T k)Ê1R
)

= tr
(

R⊤Ê1
⊤f(T k)Ê1R

)

If we assume that f(T k) is defined whenever f(A) is (the conditions for which are rigorously proved in [9]),
we may diagonalize T k (which is symmetric by construction) via T k = UΘU⊤ so that f(T k) = Uf(Θ)U⊤.
Now let U = [u1, · · · ,ukb] then we have

tr
(

R⊤Ê1
⊤f(T k)Ê1R

)

= tr
(

R⊤Ê1
⊤Uf(Θ)U⊤Ê1R

)

= tr
(

(

R⊤Ê1
⊤U

)⊤ (

R⊤Ê1
⊤U

)

f(Θ)

)

By the cyclic property of tr

which we may write (noting some properties of the Frobenius norm) column-wise as

tr
(

Ω
⊤

i f(A)Ωi

)

≈
kb
∑

i=1

∥

∥

∥
R⊤Ê1ui

∥

∥

∥

2

f(θi)

≡

kb
∑

i=1

wif(θi)

(5)
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where Ê1ui = (ui)1:b = U1:b,i and we note that our functional trace approximation takes the form of a
quadrature (an elegant classical result). It turns out that the Lanczos iteration gives the quadrature weights
and points for approximating some integral that gives exactly tr

(

Ω
⊤

i f(A)Ωi

)

. And we note, for a unit
block size b = 1, we have

tr
(

ω⊤

i f(A)ωi

)

= ω⊤

i f(A)ωi ≈

k
∑

i=1

∥

∥∥ωi∥e⊤

1 ui

∥

∥

2
f(θi)

= ∥ωi∥
2

m
∑

i=1

|U1,i|
2
f(θi)

which is the classical stochastic Lanczos quadrature given in most treatments [14].

3 Numerical Results
To benchmark the performance of the blocked Stochastic Lanczos iteration for functional trace estimation, we
chose two large sparse spd benchmark matrices from suite sparse [5] (bcsstk09), and estimated the functional
trace tr (f(A)) with f(x) := ln(1 + x) + x. The code for this project is available here.

3.1 Block-Dependence of Convergence
First, to demonstrate the preconditioning abilities of the blocked Hutchinson and Hutch++ estimators, the
convergence to the Hutchinson estimate t̂rH for a given set of samples as a function of the number of Lanczos
iterates was computed for the bcsstk09 test case. The results are shown in Fig. 1. As we might expect from a
blocked algorithm, it converges faster with larger block sizes for the same number of Lanczos iterates. And,
as will become the trend, the Hutch++ estimates trend similarly, which we would expect since the stochastic
component of the Hutch++ estimator is given computed with the Hutchinson estimator.

(a) Hutchinson Estimator (b) Huch++ Estimator

Figure 1: Block-dependence of estimator convergence with respect to Lanczos iterations (s = 60)

Although Fig. 1 is clean, it is not a fair comparison, because in practice, the Lanczos iteration requires
some reorthogonalization scheme to maintain stability, which introduces a term that depends on the square
of the block size into the computational complexity, so the algorithm scales as O(kbnnz(A) + b2k2n) (for
each estimation of tr(Ω⊤

i f(A)Ωi)) and hence requires more flops for larger block sizes. To determine the
convergence of the estimate with respect to the number of flops, we estimated the number of flops for the
Lanczos iteration as

F̂ =
s

b

(

2knnz(A)b+
3

2
b2nk(k − 1) + 2kbn

)
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where we have assumed full reorthogonalization. Using this estimated number of flops, we get the results
in Fig. 2, which suggest that there are no benefits to blocking (in terms of computational complexity), and
nonblocked methods are more efficient per flop.

(a) Hutchinson Estimator (b) Huch++ Estimator

Figure 2: Block-dependence of estimator convergence with respect to flops

However, blocked methods are often chosen over nonblocked methods because they enable the use of
BLAS-3 [7], which is more cache efficient in many cases, and can lead to a significant speedup. One would
then hope that this speedup might be enough to offset the increased number of flops. To investigate this,
compute time was estimated using BenchmarkTools.jl [3], and the results are shown in Fig. 3. While the
stratification is not as Stark as in Fig. 2, larger block sizes tend to require larger compute time for both the
Hutchinson and Hutch++ estimators.

(a) Hutchinson Estimator (b) Huch++ Estimator

Figure 3: Block-dependence of estimator convergence with respect to compute time

3.2 Block-Dependence of Estimator Variance
For a perfectly well-converged estimate (t̂rH or t̂rH++), the variance of the Hutchinson (and by extension
Hutch++) estimator is known apriori, and decreases at the Monte-Carlo rate ∼ s−1 [14]. However, for a
finite precision computation of t̂rH by the block stochastic Lanczos quadrature, there is a potential for the
blocking of samples to affect the estimator variance. In addition, it is not clear how this affect will depend
on the number of samples s and the number of Lanczos iterates k. At the very least, we would like to ensure
that blocking does not increase the estimator variance, and so the estimator variance was estimated by the
sample variance S2 over N samples whose estimated standard deviation is given (approximately) by

σ̂S2 = S2

√

2

N − 1
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The results are shown in Fig. 5, 4. In all cases, the block size seems to have no stong effect either as a
function of samples or Lanczos iterates, and in Fig. 5 we see the expected decay of the estimator variance with
the number of samples s, and the slightly quicker decay (in this case) with the variance-reduced Hutch++
estimator.

(a) Hutchinson Estimator (b) Huch++ Estimator

Figure 4: Block-dependence of estimator variance with respect to Lanczos iterations, s = 60 (shaded regions
indicate ±1σ confidence)

(a) Hutchinson Estimator (b) Huch++ Estimator

Figure 5: Block-dependence of estimator variance with respect to the number of samples s, k = 20 (shaded
regions indicate ±1σ confidence)

4 Conclusions
We have introduced a block preconditioner for the stochastic Lanczos quadrature for functional trace esti-
mation and empirically investigated its convergence properties and its affect on the estimator variance. For
the cases considered, although there is a strong block dependence (suggesting that the block preconditioner
is effective for an equal number of Lanczos iterates), the blocked algorithm converges more slowly per flop,
and despite the increased cache efficiency of BLAS-3, even converges more slowly per compute time. It’s not
clear, however, whether there exist regimes where blocking does lead to quicker convergence (per compute
time), as only the bcsstk09 case was considered, and a more expansive study is needed yet to determine
whether blocking can be an effective preconditioner for functional trace estimation.

In addition, it is not clear how blocking might affect exchangable functional trace estimators (like XTrace
[8]), as blocking formally breaks exchangability. We would expect that, since the stochastic component of
most exchangable estimators is computed via the Hutchinson estimator, if the Lanczos iteration is well
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converged, the blocking should have no effect on the estimator variance (as Figs. 5, 4 show), though
confirmatory empirical calculations may still be insightful.
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